7x24快讯 ·

TensorFlow重大升级:自动将Python代码转为TF Graph,大幅简化动态图处理!

TensorFlow发布重大功能改进AutoGraph,能自动将Python代码转换为TensorFlow Graph,TF动态图处理速度大幅提升!

今天,TensorFlow团队发布新功能“AutoGraph”,能自动将Python代码(包括控制流,print () 和其他Python原生特征)转换为纯TensorFlow图代码(pure TensorFlow graph code)。

不使用 Eager Execution编写TensorFlow代码需要进行一些元编程(metaprogramming) ——先编写一个创建图(Graph)的程序,稍后再执行这个Graph。这可能令人困惑,尤其是对开发者新手来说。一些特别棘手的情况涉及更复杂的模型,比如要使用 if 和 while 的模型,或者有 print () 等副作用或接受结构化输入的模型。

为什么我们需要Graph呢?Graph允许各种优化,例如删除常见的子表达式和融合内核(fusing kernel)。再者,Graph简化了分布式训练和部署到各种环境的过程,因为它们形成了独立于平台的模型计算过程。这对于模型在多个GPU或TPU上的分布式训练尤为重要,如果你通过TensorFlow Lite、移动端、物联网等其他平台分发模型,Graph也很重要。

下面是一个很简单的、你可能希望添加到Graph里的操作:

?

参与评论